LOCAL LEVI-FLAT HYPERSURFACES INVARIANTS BY A CODIMENSION ONE HOLOMORPHIC FOLIATION By D. CERVEAU and A. LINS NETO

نویسنده

  • LINS NETO
چکیده

In this paper we study codimension one holomorphic foliations leaving invariant real analytic hypersurfaces. In particular, we prove that a germ of real analytic Levi-flat hypersurface with sufficiently “small” singular set is given by the zeroes of the imaginary part of a holomorphic function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Levi-flat Hypersurfaces and Codimension One Foliations

We study Levi-flat real analytic hypersurfaces with singularities. We prove that the Levi foliation on the regular part of the hypersurface can be holomorphically extended, in a suitable sense, to neighbourhoods of singular

متن کامل

Nowhere Minimal Cr Submanifolds and Levi-flat Hypersurfaces

A local uniqueness property of holomorphic functions on realanalytic nowhere minimal CR submanifolds of higher codimension is investigated. A sufficient condition called almost minimality is given and studied. A weaker necessary condition, being contained a possibly singular real-analytic Levi-flat hypersurface is studied and characterized. This question is completely resolved for algebraic sub...

متن کامل

Holomorphic Motion of Circles through Affine Bundles

The pivotal topic of this paper is the study of Levi-flat real hypersurfaces S with circular fibers in a rank 1 affine bundle A over a Riemann surface X. (To say that S is Levi-flat is to say that S admits a foliation by Riemann surfaces; equivalently, in the language of [SuTh], S may be said to prescribe a holomorphic motion of circles through A.) After setting notation and terminology in §2 w...

متن کامل

On the Dynamics of Codimension One Holomorphic Foliations with Ample Normal Bundle

We investigate the accumulation to singular points of leaves of codimension one foliations whose normal bundle is ample, with emphasis on the nonexistence of Levi-flat hypersurfaces.

متن کامل

On Holomorphic Foliations Without Algebraic Solutions

A more recent milestone in the subject was J. P. Jouanolou's lecture notes [1979]. An often quoted result from these notes states that the set of holomorphic foliations of the complex projective plane P that do not have an algebraic solution is dense in the space that parametrizes the foliations; see [Jouanolou 1979, Chapter 4, p. 157 ff.]. In order to prove this result, Jouanolou had to constr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010